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A RANK 2 VECTOR BUNDLE ON P4  WITH 15,000 
SYMMETRIES 

G. HORROCKS and D. MUMFORD 
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THE MOTIVATION for this paper was to look for rank 2 vector bundes F on P" for n 4 
which are not direct sums of lines bundles. Schwarzenberg [14], found many such bundles 
on P2  and one of us [4] found quite a few on P3  although already they seem to be " rarer ". 
In this paper, we construct one on P4. It seems quite plausible that there are none on Pn if 

n is large enough. The question is closely related to the existence of non-singular subvarieties 
X"-2  c 03" of dimension n — 2 which are not complete intersections: 

X =H1.112. 

If F is an indecomposable rank 2 vector bundle and n> 3 then for k 0, a general section 

s eF(,97(k)) will vanish on a non-singular X"-2  which is not a complete intersection; con- 
versely, if X" -2  c P" is non-singular and 	6, a recent result of Barth and Larsen ([1] 
and [9]) shows that the line bundle On 2  is isomorphic to Ox(k) for some k, from which it 
follows readily that X is the zero-set of a section of a rank 2 bundle F. And if X is not a 
complete intersection, then F is indecomposable. Now interestingly enough, it seems as far 
as we know that classical procedures and classical examples yield non-singular X"-2's in 
P", which are not complete intersections, only i f n < 5. 

The vector bundle constructed here has a 4-dimensional space of sections almost all of 
which vanish on a non-singular X. c P4  which is an abelian surface. We first found the 
bundle by establishing that such Xs's had to exist and then constructing F from X, as an 
extension. However by then applying the general " Postnikov " construction of [3], we 
found a much more direct description of F. The theory of the bundle F and of the 
surfaces Xs  is united by the fact that both are acted on by the Heisenberg group H (an irre-
ducible 2-step nilpotent subgroup of SL5(C) of order 125: cf. §1) which is well known from 
the theory of theta functions; F is acted on also by the normalizer N of H, of order 15,000. 
We have developed all our results by keeping track of the action of N at every stage and 
using the character table of N where necessary. This is a quick efficient method although 
unfortunately not very illuminating. Our main results are as follows : we construct the bundle 
F in §2 and note immediately by examining its Chern classes that it is indecomposable; in 
§4 we find the cohomology of F(n) for every n; in §5, we prove that the zero-sets X, of its 
general sections are abelian and that conversely all abelian surfaces in P4  arise in this way; 
in §6, we show that as a corollary we get an explicit birational map between a certain 
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moduli space of abelian surfaces and P3. We have put the character table of SL2(15) in an 
appendix for easy reference. 

§1. THE HEISENBERG GROUP IN DIMENSION FIVE 

The purpose of this section is to review in a special case a configuration of groups 
studied recently by Weil [16] (cf. also Igusa [7, Chap. 1]; Mumford [12, §1]) and closely 
related to the theory of theta functions and abelian varieties. Weil's construction starts 
from an arbitrary locally compact abelian group A, but we take A = Z5  , the cyclic group 
of order 5, and proceed as follows: 

Let 

V = Map(715 , C), 

be the vector-space of complex-valued functions on 715 . Note that V has a natural 0-rational 
structure given by the 0-subspace Map(Z5 , 0). Let e = e21a15  E p.5  , the group of 5th roots 
of 1. The Heisenberg group 

H SL5(C) 

is the subgroup generated by a and T, given by 

crx(i) = x(i + 1) 

tx(i) = six(i) 

for all x e V. Explicitly, H is the set of matrices 

Au = (Eai÷b  • 	j+ 

and has order 125. An an algebraic group, H is defined over 0, but it only splits over 0(8). 
The Galois group 0 of 0(0 over 0 acts on H. Let 0 e 0 be the generator given by OW = 
(so that 02  = complex conjugation). We shall sometimes use the notation ' to indicate the 
action of 0. The group H has center C equal to It5  . IV  and is a central extension: 

1 --->11,5 	H 	X Z5 	1, 	 (1.1) 

where a, T in H are mapped to (1, 0), (0, 1). The action of 0 preserves this sequence and 
acts on Z5  x 715  by (n, m) (n, 2m). 

V is clearly an irreducible H-module, and it gives rise to three more by the action of 
0: let Vi  be the representation obtained from V by composing H -+ Aut V with 0i. The trace 
<h, V>  of an element h e H on Vi is given by: 

<erly, V> = 5 . 	<14 V> = 0 	(h e H — C). 	 (1.2) 

It follows that the four representations Vi are inequivalent. These plus the 25 characters of 
Z5 x 715  exhaust the irreducible representations of H since the sum of squares of their 
degrees is 125, the order of H. 

Let 0: 715 x Z5  H be the section of (1.1) given by: 
(pon,  = E2mnamtn,  

and define co: µ5  x (715  x Z5) H by: 

co(cc, z) = a • tb(z). 
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Then co is bijective and the group law on H goes over to the law of composition: 

(a, z) • (a', z') = (aa'B(z, z'), z + z') 
where 

B(m,n; m', n') = 83(mn —"'")  

is a 1.15-valued skew-symmetric form on 15  x 15  . Note that all automorphisms of H pre-
serve the sequence (1.1) and since B(z, z')2  Iv  is the commutator of (a, z) and (a', z'), they 
preserve the form B. 

Let N be the normalizer of H in SL5(C). Each element of N induces by conjugation an 
automorphism of H, hence an automorphism of 715  x 15  preserving B. But the group of 
such automorphisms is isomorphic to SL2(Z 5), hence we get a homomorphism: 

cc: N —> SL2(715)• 

The kernel of cc is just H itself because (a) any automorphism of H which is the identity on 
C and on H C is in fact inner, and (b) since the representation V is irreducible, C is the 
centralizer of H in SL2(Z5). Moreover cc is surjective. If x e SL2(715), define yx: H H by 

yx co(a, z) = w(a, x(z))• 

Since x preserves B, the mapping y x  is an automorphism. The new representation of H on 
V obtained by composing with yx  is equivalent to V since yx  is the identity on C and so 
leaves the character fixed. So x is induced by an element of N, in fact an element of N n SL5  
(0(E)). Thus cx is surjective and N c SL5(0(8)), hence 0 acts on N and the action of N on V 
induces actions on each V,. 

Since y • yy  = yxy  and yx  is induced by a member of N determined up to multiplication 
by elements of C, it follows that N IC is a semi-direct product (111C) • SL2(715). Let X be the 
inverse image in N of the factor SL2(Z5). Then X is a central extension of SL2(715) by C. 
But the group of Schur multipliers H2(SL2(715), C*) is zero [5, p. 645], hence X is a product 
C • SL2(Z5) and the full group N is a semi-direct product H • SL2(Z5)• 

Next, look at the dual representation Vi* of V1: since N acts on each Vi  by unitary 
representations, Vi* is isomorphic as N-module to the complex conjugate Vo  i.e. to Vi+2  . 

Finally, look at the representation of N in Vi 	C acts trivially here so we have a 
representation of N/C. For all x e Vo le Vi*, put 

Fx  ®i(h) = 1(hx). 
This gives a map 

F: VI  px Vi* 	C) 

which is easily seen to be injective, with image the space W, of functions f on H such that 

f (ah) = a2i  f (h), 	a e 115 4. 

Moreover, for every n e N, let n induce by conjugation the automorphism n* of H. Then 

F,000(h) = Fnx01•n 1(h) 

= l• n'(hnx) 

= 1(n* (h)x) 

= Fx01(n*h) 
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so F transforms the cation of n on Vi x0 Vi* to the cation fi--+ f n* on C-valued functions on 
H. Now it is easy to check that if 

f (co(oc, z)) = c22̀  f (co(c2, 2z)), 

then fi-+ J  is an isomorphism of Wi  and W,±1  commuting with the action of N: therefore 
the four representations Vi  0 Vi* are all equivalent, so we may as well work with V0 V*. 
This space has a decomposition C 0Z where Z is the subspace of trace zero. One sees 
immediately that as an H/C-module Z is the sum of the 24 non-trivial (linear) characters 
of H/C. Since N acts transitively on these, Z is irreducible as N/C-module. Its character 
has values in 11 since Z is equivalent to all its conjugates. 

To summarize our conclusions, we have found groups: 

order 5 	order 125 order 15,000 

C c H c N c SL5(13(e)). 	 (1.3.) 

211 	H/C 	 211 

Fis 	211 	 H SL2(15) 

Z 5  x Z 5  

It is not hard to work out the explicit matrices representing elements of N. They turn 
out to be of two types: 

Au  + 
Eai2 +bij +cj2 +di + ej + f 

(a, ..., fe Z 5 , b 	0) 

   

and 
Au=  ± caz2+bz+,6 i,di+, 	(a, 	, e 	, d 0) 

(the sign being adjusted to make the determinant + 1). It will be necessary to identify some 
special elements of N of the second type for the purpose of computation. Look at the 
elements 1, it, v e SL5(Q(6)) given by 

zx(i) = x(—i) 

µx(i) = —x(2i) 

vx(i) =Ei2 x(i) 

where I/ = E E4,  

<I, vi> = 1 

Vi> 	—1, <112, Vi> = 1  

<v, Vi> = Oi(n — n'), <v2, vi> = 0i(f — 11) 

= e2  + e3. Conjugating a and 2, we find 
ciat  = 	 / -1T1 = - 1 

µ-1aµ  = a2 
	 it-1Tit = 23 

(1.4) 

v-lo-v = aT2  mod C, -1  V TV = T . 
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Thus 1, v e N and their images 	in SL2(25) are: 

= - 
0 
 0\ 

- 1) 

= ( 2 0   
3) 

(1.5) 

= 
0 
	21) 

§2. THE BUNDLE 

Let P be the projective space representing the one-dimensional subspaces of VI. Since 
V is given an underlying rational vector space, P is to be regarded as the complexification 
of a scheme over G. In particular it is meaningful to speak of coherent sheaves and their 
homomorphisms as being defined over specified subfields of C. 

Write 0 for the sheaf of local rings of P and 0(1) for the canonical positive invertible 
sheaf on P. The general linear group acts on 0(1) and the space of sections F(0(1)) is 
canonically isomorphic to V* the dual of V. Regard V as a sheaf over Spec C. The external 
tensor product 0(1) 0c  V is a sheaf on P and F(0(1) 0c  V) is isomorphic to Homc(V, V). 
Let a in F(0(1) ac  V) correspond to Iv  . The Koszul complex i is the exterior algebra 
A*(0(1) 0, V) with multiplication by 0 as differential: 

	

0 0 0(1) 0 V -* 0(2)Ø A2 V-* 0(3) 0 A3V -› 0(4) 0 A4V 	(5) 0 A' V 0. 

The quotient 0(1) 0 V/0 is isomorphic to the tangent sheaf .9" to P and the sheaf of cycles 
Im(0(i) 0 AT) c 0(i + 1) 0 Al +1  V is isomorphic to the ith exterior power Ai.% of if". 
For the construction of the bundle .9-  the relevant part of 	is: 

rk 10 	 rk 6 	 rk 10 

0 (2)0 c  A2  V 	° 	A25. 	0(3) 0 c A' V. 	 (2.1) 

Note also that 1.  has a symmetric pairing 

X.̀  C) .Y(5-  -› 0(5) 0c  A5 	0(5), 

given by x y (x A y) 5, and that this induces the natural pairing /11,9-  A4- ig" 0(5) 
and is compatible with the action of SL5(C). Note that with respect to these pairings 

go = Po*(5). 

The H-modules A2  V and 2V1  are isomorphic since (s/v , A2  V> = 10e2  and by (1.2) 
2 V1  is the only representation of degree 10 for which this is possible. In identifying A2  V and 
other such spaces as N-modules, the reader should use the general observation: 

(2.2) Let Y, Z be representation spaces for a group G and let K be a normal subgroup of 
G. Suppose that Y is irreducible as a K-module and that Z= nY as K-modules, then HomK(Y, Z) 
is a GI K-module, the evaluation mapping Y0 HomK( Y, Z) -+ Z is an isomorphism of 
G-modules, and Z is irreducible as a G-module if and only if HomK(Y, Z) is irreducible as a 
GI K-module. 
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In the present case, put W = Hom11(V1, A2  V). It is a representation of N/H of degree 2, 
and the trace of v (the image of v in N/H) is 

<17, W> = (3 + e + e4)/(1 + 282  + 263) = 

It follows that W has character x2  (cf. character table in Appendix). 

Since N/H is perfect, W is unimodular. So W has an invariant skew symmetric pairing 
defined over 11 and this form is unique up to a scale factor. Let 

f: 	A2V 0 W 

be the N-homomorphism determined by this form, and let 

g: A3V® W—> V3(=1/1*) 

be the dual off composed with the canonical mapping A3  VO W = A3  V0 W*. Combining 
these with (2.1) gives the sequence of sheaf homomorphisms 

0(2) ® V1  224 0(2)0 A2  V 0 W 
Po 0 lw 

A2.9-  W 

0(3) 0 A3  VO W -1°24 0(3) © V3 . 	(2.3) 

This sequence is defined over Q. 

Let 

rk 5 	rk 12 	 rk 12 	rk 5 

p: 0(2)0 —> A2 	W, 	q: A2  g-  W —> 0(3) Cx V3  

be the composites of the first two and last two morphisms in 2.3. Note that q p* (5) . We 
shall prove that qp = 0 and p, q are locally split. From this it follows that .9" = Ker q/Imp is 
locally free of rank 2 and defined over Q. The bundle 	is our goal. 

To prove that qp = 0 it is sufficient, since 0 () V1  is generated by its sections, to show 
that F(qp( — 2)) = 0 and to prove that p, q are locally split it is sufficient that p is — for then 
q is locally split by duality. The first assertion follows immediately from 

LEMMA 2.4. Let U be the symmetric square representation ,S2W of degree 3, and let W' 
be the representation obtained by acting on W with the Galois automorphism 0. 

(i) F(A2.9-(— 2)) A21/ 22-' V1  ® W, F(A2.9"( — 2) W) = V, 0) (V, U), and F(p( — 2)) 
is equivalent to the inclusion V1  --> Vi  CI (V1 	U). 

(ii) F(0(1) ® V3) = (V1  U) ® (V1  W') and F(q( — 2)) is equivalent to the homomor-
phism Vi  C+(V1  U) --> (V1 00,0 (V1  ® W') induced by the identity on V1  ® U. 

Proof. (i) The first isomorphism follows from (2.1), and the second is just the evaluation 
mapping. The third isomorphism now follows from the decomposition WO W=C 0 U. 
Finally, since F(A2i9"(— 2)) = A2  V, the mapping F(p( — 2)) is equivalent to f which is just 
the mapping induced by C —>C ED U. 

(ii) First note that F(0(1) 0 1l3) = V* ® V3  . The character of V* V3  as an H-module 
is given by 

<h, V* C) V3> = 0(h e H — C), <e 1, V* V3> = 2582i. 
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So V* 0 V3  = 5V1  as an H-module. Put X = HomH(Vi, V* 0 V3). The formulas (1.4) show 

that 

= - 1, <p2, x> = 1, <17, x> = - 
The first of these shows that X must have an irreducible component X1  of degree 3, the 
second that the remaining component X2  is irreducible of degree 2, and the third that 
X', X2  have characters ,(3 , x2'. Since X22  = X3 + XI and 	= 0x2  it follows that X1  = U 

and X2  = W'. 

To prove the statement about Fq(- 2) it is sufficient to show that Fq(- 2) 0 0, for 
V1, V, 0 U, V1  Ware irreducible. But q = p*(5) andp 0 by (i). So q 0, and Fq(- 2) s 0 

since F(0(1) 0 V3) generates 0(1) V3  . 	 Q.E.D. 

It remains to be proven that p(-2) and hence p splits locally. Let v be a non-zero element 
of V and write it for the corresponding point of P. We must show that the induced map on 
the vector bundle fibres: 

p(- 2)0: V, A2T©® e(-2)o  W 

is injective (To  = tangent space to P at i)). But via Po 

A2T0  ® (9(-2)0  = A2-f /v A V, 

so in view of (2.3), the injectivity of p(-2)0  is equivalent to: 

LEMMA 2.5. For all nonzero y e V and t e v,, the element f(t)0 (v A V) 0 W. 

Proof Let vi  be the element of V defined by vi(j) = Si;  and put 

+ , A , 	 + , A , 	 + 	, 	 + 	A 
L 0 = 	V3, 	V3 A  V4, .2  = V4 .0  , .3  = Vo  A V1, .4  = V1 V2  

Zo  = V1  A V4, Z1  = V2  A Vo , Z2 -  = V3  A V1, Z3  = V4  A V2 , Z4  = Vo  A V3 . 

The linear mappings w + : Vl  -> A2 V, w-  : V1  -> A2 V defined by w +(vi) = zi +, w-(vi) =  zi - 

are H-homomorphisms, and form a base for W. We wish to show that for non-zero v e 
t e V1, the equations 

- W k,t) -=v Ay ,w (t)  =VA),-  

are contradictory. But these imply that 

w+(t) A w-(t) = 0, 

and if t =Eai vi , then one computes that 
4 

w+(t) A w-(t) = E (- 1)iai2v0  A • • A Pi  A • • • A v4  
i=0 

hence t= 0. 	 Q.E.D. 

This completes the proof that F is a locally free sheaf of rank 2. To show that .97  is 
indecomposable it is sufficient to verify that its total Chern class c(F) is irreducible. By 
definition 

c(.97) = c(A2.fl2  • c(0(2))-  • c(0(3))-5. 
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Let h be the positive generator for the Chow ring of P. It follows that 

c(F) = ((1 + 2h)1°(1 + h) 5)2(1 + 2h)-5(1 + 3h)-5  

(where the first factor comes from the resolution of A25-  given by the Koszul complex). 

Hence 

c(g) = 1 + 5h + 10h2. 

Applying the Riemann-Roch theorem or directly from the definition of 	one also 

computes the Hilbert polynomial: 

X( 7(n — 5)) = Mn2  — l)(n2  — 24). 

§3. THE INVARIANT QUINTICS 

This section is preliminary to the computation of 1--(F) and the proof of the non-
singularity of the zero set of a general section. The main results are the determination of the 
N/H-module CH( 0(5)) of H-invariants of F(0(5)) and the sheaf of ideals 2' in 0 generated 
by the subspace F„(0(5)). In the next section we show that this subspace is isomorphic to 
the second exterior power of r(,), however the present section does not depend on this 
fact. 

Write a, for the character of Ai l/ as an N-module, h, for the character of Si  1/, and 

al*, h,* for the characters of the duals. Then 

ai* = ai  = 02a, 

h,* = 	02h, 	 (3.1) 

since the representations are unitary. Also 

ai* = a5 _ 	 (3.2) 

since the representation is unimodular. As in §1, decompose VxQ V* into C EDZ and let 
be the character of Z. It follows that h,• 02h1  = Ohl  03111 =1 +C. 

LEMMA 3.3. (i) al  = h1  

(ii) az = Z2* Oh1  

(iii) a3  = 2c2 . 03h, 

(iv) a4  = 02h1  

(v) h2  = X3' • Ohl 

(vi) h3  = (Zs + Z2')* 03h1 

(vii) h4  = (X4 + x4 #  + X3 + Z3') • 02h1 

h5  = (X3 + Z3') + S • (Z3 + Z3' — 1) 

(ix) h10h1  = (X3 + Xz')• 03h1. 

Proof (ii) follows from Lemma (2.4) and then (i), (iii) and (iv) follows from (3.1) and 
(3.2). To prove (v), note that (2.2) implies h2  = x Oh1  for some character x of N/H. A 
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simple computation shows that x(i) = 3 and x(v) = — 11. So since x nas degree 3, x = Z3'• 

Now use the well-known formula: 

h, = 	— 	+ • • — (-1)ta i ho  , 

plus the identity (ix) proven in (2.4) and (vi), (vii) and (viii) follow by computing characters 
via the character table in the Appendix. 	 Q.E.D. 

The first of the main results of this section follows at once from part (viii) of this 
lemma: 

THEOREM 3.5. The character of I'„ (0(5))is x 3  + x3' and its dimension is 6. 

Let y, be the ith coordinate function on V, (y i(x) = x(i)). The monomials 
4 

, 5 , 3„ 	3„ , 2, 2, 2, 2, FT 
.Y0 YO .Y1Y4, YO .Y2Y3, .Y0 Y2 .Y1, YO Y1 J'3 11.ri) 

i=0 

are invariants of T, and the six forms 

S = E y i 5  , Q, Q', R, R', Y = 5 n y, 

obtained by summing these monomials over the powers of a are invariants of H. Since they 

are linearly independent they form a base for 1",(0(5)). 

Another natural basis of TH(0(5)) is obtained as follows: the group H/C has six 
proper subgroups and these subgroups are permuted triply transitively by N. The fixed 

point set in P of the subgroup {C, TC, T2C, -c 3C, T4C} is just the simplex of reference. The 

six simplexes determined in this way by the six subgroups we call the fundamental simplexes. 
Each of them determines, up to a scalar multiple, the quintic whose zero set consists of five 
three-dimensional faces of the simplex. The subspace of r' (0(5))that these quintics span is 
invariant under both N and 0. So Theorem 3.5 shows that these six quintics also form a 
base for T„ (0(5)). 

Now let L be the set of common zeros of the polynomials in TH(0(5)), and let Li  be its 

intersection with yi  = 0. But 

S(0, Yi, • • • Y4) = Y15  + Y25  + Y35  + Y45  

Q(0, Y1, • • • Y4) = Y2 YAY22Y1±Y32Y4) 

Q'(0, Yl, • • • , Y4) = YIY4(Y12Y3 + Y42Y2) 

R(0, yi, • • • , 3/4) =Y2Y3(Y12Y3+Y42Y2) 

R(0, YI, • • • 9 Y4)=Y1Y4(Y22Y1+ Y32Y4)• 

These equations define the set Lo  and it is straightforward to check that it consists of 
precisely the five lines 

Y2 + sry

3  = c2r
y1 

 + y4  = 0 
	

(*) 
plus the 20 points 

Yt = Y2 = 0, Y3= 85/4 

Y1=Y3= 0, Y2 = eY4 

Y4=Y2= 0,Y3= 8rY1 

Ya =Y3= 0, Y2 = 8TYl• 



72 	 G. HORROCKS ana D. MUMFORD 

The set of points of Li  is just alo  , the same set with yi  = 0 after a cyclic permutation of the 
coordinates Taking the union over all i, it follows that the set L consists of the 25 skew 

lines: 
Yi = Yi+2 = 8rYi+ 3 = 82rYi+ 1 ± Yi+4 = 0, 	(0 	r < 4). 	(3.6) 

We claim that the scheme 01..T is this set of 25 skew lines with reduced structure sheaf, 
hence is a regular scheme. If x c L lies on only one face of each of the fundamental simplices, 

then the ideal 2, is defined by six linear forms in the yi's, so .\/.2., = 	. On the other 

hand, say x E L lies on a 2-dimensional face of at least one fundamental simplex. Then x 
is necessarily on a 1-dimensional face or edge of this simplex (as you see by intersecting the 
line (3.6) with a typical 2-dimensional face yo  = yi  = 0 on the simplex of reference). But 
the edges of two distinct fundamental simplices do not intersect: in fact N permutes the 
fundamental simplices triply transitively and one may readily calculate that the edges of 

y = 0 and ni 	+ 	+ g2iY2 + e3iY3 + g4iY4) = 0 do not intersect. Therefore x is 
singular on at most one fundamental simplex. This shows that .2% is generated by five 
linear forms and one of higher degree. If these five linear forms met in a plane, L would 
contain more than one line in this plane, i.e. L would have two components that met. 

Since this is false, 2, is generated by the five linear forms and .\/21„=..Tx  again. 

§4. THE SPACES 1-1107(0 
Let l//i(n) be the character of Hi(F(n)) as a representation of N. To determine these 

characters we write for the cokernel of p (cf. §2) and consider the exact sequences 

—> 6(2) 0 V1  --> A25.0 W —> —> 

0 —>.°7 --> —> 0(3)Q V3-0. 	
(4.1) 

Using the well-known values for the cohomology of 0(n) and A2(.% (n)) (which is just 
02(5 + n), 52i  being the shear of i-forms on P) we get 

--> 1-(0(n + 2)) 0 V1  F(A2g-(n)) 0 W"--> F(5 (n)) 0; 

(g(n)) = (0); 

H2(5(n))= (0) if n —5, H2(W(-5))'' W; 	 (4.2) 

o —> r(. (n)) —> 1-(g(n)) 1"(0(n + 3)) 0 V3  -+ H1(.F(n))—> 0; 

tlf 2(n)= 0 if n 	—5, 1/12(-5) X2 - 
Now since A2 ..*7  = 0(5) = Sr (10), Serre duality asserts that Hi  (n)) and H4 	(-10 
— n)) are dual. We deduce using (4.2) 

IP1(n) = 0 if 	— 4, 

III 3(n) = 0 if 	— 6. 

Since F(A2:T( — 3)) = (0) we further deduce from (4.2) 
,1(— 

3) = 03h1, 1//3( — 7) = Ohl. 	 (4.4) 

From Lemma 2.4 (ii) the image of F(W( — 2)) in T(0(1)) 0 V3  has dimension 15. But the 
first exact sequence of (4.2) shows that the dimension of FW( — 2) is 15. So from the second 
exact sequence and Serre duality we deduce that 

(4.3) 
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111°(n) = 0 if n 5 -2 

t114(n) = 0 if n 	-8. 

We can now calculate ti'(-2) from the exact sequences of (4.2) together with (4.5) and we 
find 

//1(-2)=x2' • ohi, 03(- = Z2: • 03h1. 	 (4.6) 

Consider now the characters Vii(j) for i = 0, 1 and j = 0, -1. The exact sequences of 
(4.2) together with Lemma 3.3 give 

>/i°(-1) - 01( - 1) = -x2' • hi, 

ten - 01(0) = X4 - X2' , 
and in particular it follows that 

te(0) x4, 0'(0) >= X2', 
where the inequality means that the difference between the two sides is the character of a 
representation. Also, since F(.9" (n)) is a subspace of F(5 (n)), the exact sequences show that 

A- 1) (X4# + X4 + X5)hi, 

0°0) X4 + X5 + (X4 + X5 - X2X. 

Since /12,F,  = 0(5) there are homomorphisms 

a(- 1) : A2F( 	-1)) -4 F(9(3)), : A2F( ..F) r 0(5). 

LEMMA 4.10 Let be a locally free sheaf of rank 2 on P such that r(g(- 1)) = 0, let 
y: A2F(Y) FA2(,99) be the canonical homomorphism, and let A be any subspace of F(Y). 
Then 

dim y(A2A) 2 dim A - 3. 

Proof Since the Grassman cone in A2A has dimension 2 dim A - 3 it is sufficient to 
show that the only element of this cone in Ker y is the zero. 

Suppose that y(s A t) = 0 for some s, t in A. Assume s, t are not both zero, then they 
generate a subsheaf 2' of <99 with rank 1. Since 	is torsion-free its bidual is an invertible 
sheaf. So s, t are contained in a subsheaf isomorphic to Or) for some r. As r(,9'(-1)) = 0, 
it follows that r 0. Hence s, t are proportional and s A t = 0. 	 Q.E.D 

First consider 4-1). Suppose that 0°(- 1) 0 0. Since the terms of the first inequality 
of (4.9) are irreducible characters with degrees at least 20, it follows that dim F(F(- 1)) 

20 and so by the lemma dim F(0(3)) 37. Since dim r0(3) = 35 it follows that 

/°(-1) = 0, 1/11(-1) = Z2' • h1. 	 (4.11) 

Now consider 2. Take A to be the subspace Fi,(.97) of H-invariant sections. From 
Theorem 3.5, dim F,(0(5)) = 6. So the lemma shows that dim A < 5. Together with (4.8) 
and (4.9) this shows that the character of Fii(,F) is x4  . Applying the lemma again shows that 
dim 2(A) 5. So since F,(0(5)) has character X3  + X3'  it follows that 2 is an isomorphism 
from A2r„(.9--) to FH(0(5)). 

We claim that in fact FH(,F) = F(2/7). If this is not true, then as a representation of 

(4.5) 

(4.7) 

(4.8) 

(4.9) 
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H, the space F(F) must contain all the non-trivial characters of H/C at least once (by 
(4.9)), hence dim F(<9--) 28. Let A, B P4  be two hyperplanes with homogeneous equa-
tions a, b and consider the exact sequence 

0 	.97( — 2) 
	(a, b) 	

.97(-1) 	,F(— 1) 
	(b,-a) 	

17  A. B --"3. 

We find, since F(„F(— 1)) = 0, 

dim F(FA.B) dim F(F) — dim Ker[(a, b) on 111(,(-2))]. 

But from (4.2), 111(g(-1)) is generated by H°(0(1)) 0 Hi(g(— 2)). Note that/11(.97( — 2)) = 
10, hi(.97(-1)) = 10 (by (4.6), (4.11)). So if a, b are sufficiently generic the image a • H1  

(51;( — 2)) + b • Hi  (.97( —2)) in H1(.97(— 1)) has dimension at least 4. Therefore dim Fg; A . B  

28 — 10 + 4 = 22. But let s be a non-zero section of F. Its zero set Xs  is a surface (since 
F.F.(— 1) = 0) and non-empty (since c2(F) 0 0), so we can choose A, B so that A • B • X, 

is a non-empty finite set of points. Then FA. BIS(9A . B  is a torsion-free rank 1 sheaf on 
A • B, and hence isomorphic to Jr • ( 9 A. B(n) for some sheaf of ideals / defining A • B • Xs . 
Computing Chern classes we find n = 5. So, since A• B• X, is non-empty, dim F 

( 	. His CA . /3) < 21,  and finally 

21 < dim F(..FA . B) — 1 dim F(F A. BISOA. < 21, 

which is a contradiction. So, taking account of (4.7), we have 

	

1i°(0) = 	tk1(0) = X2'. 
	 (4.12) 

Finally we claim ifri(n) = 0 if n 1. By Castelnuovo's lemma [11], it suffices to prove 
that ifr1(1) = 0. By (4.2) the cup product a: F(0(1)) Q H1(F) -4 H1(.9-(1)) is surjective. 
On the other hand N acts irreducibly on F(0(1)) 0111(39 by (2.2). Therefore either OW = 
0 or a is an isomorphism. But F(0(1)) 0 HI(.F(— 1)) H1(F) is also surjective so for 
some a e F(0(1)), a a 111(.97(-1)), it follows that a v a 0 0. Since dim F(0(1)) > dim H1  
(F), it follows that b v a = 0 for some other non-zero b. Therefore a(b, a u a) = 0 and 
a is not injective. 

We summarize our calculations as follows: 

TABLE OF dim H'(. (n — 5)) 

n H° H1  H 2  H 3  H4  

(n2  — 1)(n4  — 24) 
n> 6 0 0 0 0 

12 
5 4 2 0 0 0 
4 0 10 0 0 0 
3 0 10 0 0 0 
2 0 5 0 0 0 
1 0 0 0 0 0 
0 0 0 2 0 0 

—1 0 0 0 0 0 
—2 0 0 0 5 0 
—3 0 0 0 10 0 
—4 0 0 0 10 0 
—5 0 0 0 2 4 

(n2  — 1)(n2  — 24) 
n ._ —6 0 0 0 0 

12 
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§5. THE ZERO SETS X„ se r(g-") 

THEOREM 5.1. For almost all s e F(F), the zero set of s is a non-singular surface Xs  c P 
of degree 10; when XS  is nonsingular, it is an abelian surface. 

Proof. Let Q be the projective space associated to ['(9), and let Z be the subvariety of 
Q x P represented by pairs (s, x) (s c 	x e P) such that s(x) = 0. Since A2TG9) 

11(0(5)) the sheaf .97  is generated by F(F) except at points of the set of 25 skew lines L 
whose ideal is generated by Fii(e(5)) (see §3). It follows that Z is a fibre-bundle over P — L, 
in particular it is non-singular over P — L. Applying Sard's theorem [15] to the projection 
Z Q shows that the zero variety Xs  = {xis(x)= 0} of a general section s is a surface that 
is non-singular except possibly at points of L. 

Let x e L and let e1, e2  be a basis of the free rank two Ox-module 9x . Each s e tp(.F) 
can be written 

	

s = 	+ s,e2 , 	si  e 0 x , 

so that if s, t e F(F), 

s A t = (s1  t2  — s2  t1)e1  A e2  . 

If for every s e 1"(,), s1(x) = s2(x) = 0, then for every s and t, s A t would vanish to second 
order at x. Using again the fact that MI" (.97) = F,(0(5)) and that I-W(9(5)) generates the 
ideal of L, this is impossible. We may therefore choose e1, e2  so that el  is an element of 
1-(9). Write out a basis of 1"(9) locally: 

s = el  

t = fei  + ue, 

t' = 	+ u'e2 	where f, f', f", u, u', u" E 0„ . 

t" = f"ei  + u"e, 

Then 

s A t=u• e1  A e, 

5A t' = u' • el  A e2  

	

s 	t" = u" • e, 	e2  

and t(i)  A t (i)  vanishes at x to 2nd order. 

Therefore u, u', u" must generate the ideal of L at x, i.e. their differentials are indepen- 
dent at x. But if As + ut + tilt' + let" is a general section in 1"(17), so that (2, 	a") are 
homogeneous coordinates in Q, then Z is described above points near x by the equations: 

	

= 	+ 	+ Ief") 

	

0 = 	+ 14,1u' + /2"u" 

which are easily seen to define a non-singular subvariety of Q x P. Thus Z is everywhere 
non-singular, hence by Sard's theorem so is the set A's  of zeros of a generic section s of 

To prove that X(= Xs) is abelian of degree 10 note that its normal bundle N in P is 
isomorphic to 	P. So the Chern class c(N) of N (in the Chow ring of X) is just the 
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restriction to X of 1 + 5h + 10h2. Since P has Chern class 1 + 5h + 10h2  + • • • , the Chern 

class of X is 1. So the canonical class K, is zero and the Euler characteristic c2(X) is zero. 
This characterizes abelian surfaces [8, §6]. Since c2(1V) is just the self intersection of X, the 

degree of X is 10. 	 Q.E.D 

THEOREM 5.2. Every abelian surface Z c P is projectively equivalent to the zero set of 

some section s of F. 

Proof Let g = 0(1) Q Oz . Since the Chern class of Z is 1 that of its normal bundle 
is the restriction of 1 + 5h + 10h2. As above it follows that Z has degree 10. Choose an 
origin on Z and let H(g) be the subgroup 

{zeZITz*g.'L-:- g} 

where Tz  is just the translation by z (cf. [13, §13]). Since H(s) has order (deg Z/2)2  and 
carries a non-degenerate alternating form, 

H(g) 15  X 15  . 

Further the Riemann-Roch theorem for abelian varieties (ibid.) shows that dim r(2) = 5, 
and Lefschetz's theorem implies that Z cannot lie in a subspace of P (otherwise Z would be 
simply-connected). So the mapping 

0: F0(1) r(g) 

is necessarily an isomorphism. Applying the results of [12, §1] it follows that when Z is 
embedded in P4 by the complete linear system F(2') and a suitable isomorphism is chosen 
between P4 of §2 then Z is invariant under the action of the Heisenberg group introduced 
in §1. But since 0 is an isomorphism this is just the composition of our given embedding 
and a projective transformation, i.e. after a projective transformation we may assume that Z 
is invariant under H. Actually we can go a bit further: if we choose an origin 0 in Z with 
respect to which 	is symmetric then the map x 1—> —x for this origin extends to a projec- 
tive transformation z o  of P, leaving  Z fixed, normalizing the action of H/C and so that 
zo  • n • / 0-1= ri-1 for ri  e H/C. Therefore to  must be induced by the element z of N intro-
duced in §1, and Z is invariant under Hand z. 

Next, look at the natural map: 

FH(P, 0(5)) FH(Z, g5). 

The group H(g) acts on the line bundle g5, hence there is a line bundle .11 on Y 
Z11/(3) such that n*11 = 25  (iv: Z-4 Y the natural homomorphism). Then F( Y, di) 
FH(Z, g5) and deg di = deg g5/deg 7C = 5, so dim F( Y, .10= 5. In fact, under the 
symmetry 	—x, the space F( Y, dt) breaks up into the sum of an eigenspace of 
dimension 3 and one of dimension 2 (cf. [12, §2];  note that the action of x — x on F( Y, dt) 
is only well determined up to sign, so we have no obvious way of labelling  one eigenspace 
" even " and the other " odd "). Since z is the identity on FH(P, 0(5)), the image of tfr is con-
tained in one of these eigenspaces. Therefore dim ker(tfr) 3, i.e. at least three independent 
quintics of §3 contain Z. 

Consider the map 



A RANK 2 VECTOR BUNDLE ON P4  WITH 15,000 SYMMETRIES 	 77 

A2  f( .97) 	FH( e(5)). 

We have proven that there is a subspace K c A2  F(.9) of dim 3 consisting of elements that 
are mapped to zero in F(A2(F 0 (9z)). It follows with a little linear algebra that there are 
two possibilities: 

for some basis s1, 55 , s,, s4  of F(.59, either 

(a) s, A S2  , S3  A S4, s1  A S3  - S2  A S4  E K, or 

(b) s, A s2  s1  A s3  (and a 3rd independent elt.) e K. 

Now if s A t E K, and g, Z are the restrictions of s, t to Z, then .§ =f. d for some f e C(Z). 
Therefore in case (a), 

§i=f .  32 	34 =f -  33 • 

Let D be the divisors of poles off and let .1t = (9,(D). Define 

cc 	+ 	0 ez by (91, 92)1-4  g132 + 9233 

Then all four sections §i  of .97  ® ez  are images by cc of sections of A' + 	(i.e. cc(1, 0), 
cc(0, 1), a(f, 0) and cc(0, f)). But the si  generate .97  everywhere except at the 25 lines L. Since 
Z is abelian, none of these lines is contained in Z, hence the gi  generate g; ® ez  at all but a 
finite set of points. But cc is a homomorphism of rank 2 bundles, so the support of its co-
kernel is defined by the principal ideal (det cc), and has codimension 1. Therefore cc must be 
an isomorphism. But then .112  A2 ..fc 0 ez 	hence 

4(D2) = 25 . 	)2  = 25 . deg Z = 250, 

contradiction. 

In case (b), either s2  =f. sl, g3  = g • gi, f, g E C(Z) or gi  = 0. In the 1st case, as above, 
we get a homomorphism: 

cc -* 0 

with three out of the four gi's in the image ocT(.11). Then §4  generates the cokernel except at 
a finite set of points: 

0 	
St 

(9z 	 (:) Ozioc.die 	
finite support 

By elementary homological algebra, extensions of / by a line bundle split. Using this twice 
we find must be zero, and we have 

0 -4 .0 -̀`-* F ® (9z  -› (9z  -0, 

hence c2(.97  (9z) = Z • c2(F) = 0, which is absurd. Thus §„ = 0, i.e. Z c zeroes of s,. 
Since deg Z = 10 = deg Xs, , it follows that Z = XS,. 	 Q.E.D. 

§6. CONNECTIONS WITH MODULI 

The bundle .0cr,  can be used to give an explicit representation of a certain moduli space 
for 2-dimensional abelian varieties. We first recall some standard results in the theory of 
moduli of abelian varieties: 
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(a) Let g > 1 be the dimension; 

(b) Let g  = Siegel upper -1--space of g x g symmetric matrices Q, Im SZ > 0, 

Sp(2g, D)/maximum compact K; 

(c) Fix a sequence (5 of positive integers 51, 	, 6, such that Si  divides S,±1 ; 

(d) Sp (2g, 0) acts on 02g, fixing the form 

A(e,,e,±;)= 	A(ei ,e0 = 	 0, 	1 C l,J C g; 

(e) Let La = the sublattice Zg x ni l, oil of 12g, 

= the lattice f1i P.1(1/oi)7L x Zg, characterized as the set of x a 029  such that 

A(x, y) e Z, all y E L,; 

(f) On Loi/L,, put the multiplicative symplectic form 

e,(x, y) = e27"(x' Y) . 

(g) Let F(51, 	, Sy),3  = {X e Sp(2g, 0)1 X(4) = 4}; 
F(61, 	, og) = { X e Sp(2g, 	I X(L6) = La and X = id. on L61/L61; 

(h) Then the analytic quotient spaces have the significance 

116(0) = 
def 

$,11"(61, . • • , 6do = 

moduli space of pairs (X, A), X a 
g-dimensional abelian variety, A: 
X 	X a polarization such that 

ker(A) 	(Z/6,Z)2. 

 

moduli space of triples (X, A, a), 
(X, A) as above, and 

a: ker(.1) 	L61/L6  
a symplectic isomorphism with 
respect to eA  and e j . 

ito = 59/r(o„ , 50 =- 
def 

 

(i) 24 and 116(°)  have natural structures of quasi-projective varieties; 

( j) Note that the finite " symplectic" group F(S)0/r(S) acts on lta and 116(0)  is the 

quotient 216/[1-(6)0/F(6)]. 

Now if 2 : X if is a polarization, let L,1, denote one of the corresponding invertible 
sheaves—all such are isomorphic after a translation. The result can now be stated: 

THEOREM 6.1. Let 

the Zariski-open set of points of U(5,1)  
11*(51)  = corresponding to triples (X, A, a) such . 

that L, is very ample 

Let 

the Zariski-open subset of P(F(.F)) of spaces 
P(F(F))* = of sections C - s, whose zero sets X, are non- . 

singular 
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Then U*(5, 	P(F(F))*, the action of r(5, 1)0 /F(5, 1) = SL2(715) on11(5,,)  corresponding to 
the action of N IH = SL2(7 5) on P(F(.97)). 

Proof. The idea is to set up a set-theoretic map from P(F(..F))* to 1q5,1) ; verify that 
it is a morphism and is bijective; and apply Zariski's Main Theorem. To define the map, 
start with a one-dimensional subspace C • s c f(F). This determines uniquely its zero-set 
X. This variety carries a line bundle, (9x5(1), and is invariant under the group H/C. Strictly 
speaking, A's  is not yet an abelian variety, since it has no distinguished origin. We can either 
choose any point x e X, as origin, or if we wish to be canonical, replace A', by its " double 
dual " : 

XS = Pie(Pic°  Xs), 

(Pic°  = connected component of Grothendieck's Picard scheme). 

In this case, Xs  is canonically a principal homogeneous space over X,' . In both cases, 
ex5(1) induces a polarization on X, (or X5'). And the automorphisms induced by H/C are 
the translations by the points of ker(2), so we get an isomorphism 

a: ker(2) 	H/C = 715  x 715  = 45, 1>/L(5,1) • 
def 

This is a point of Uts, l)  . The fact that this is a morphism comes from checking that the 
above construction can be carried out universally leading to an abelian scheme X over 
P(F(.97))*, plus a polarization A:: 	g plus an isomorphism of ker(A) with the constant 
group scheme 715  x 715 . This induces a morphism from P(F(F))* to gm  by the universal 
property characterizing coarse moduli spaces (cf. [10, p. 96]). To check that this map is 
injective, say C • s1  and C • s2  lead to isomorphic triples (A, 2, a). It follows that there is an 
isomorphism 

4): A's, —> Xs2  

such that (/)* 0x,s2(1) is algebraically equivalent to 0x,s,(1) and such that for all a e H/C, if 
a induces on X„ translation by xi  e X„, then 4:•Tx, = T„,4). But then changing 4)  by a 
translation, we can assume that 4)*((9x,„(1)) = OX,„ (1), hence 4) is the restriction to X„ of a 
projective transformation T. Moreover r satisfies at = ra on X5,, all a E H/C, hence ra = UT 

in PGL5(C). But H/C is its own centralizer so i a H/C. Therefore Xs, = r(X„) = X,,, 
hence C • s1  = C s2  . Finally surjectivity follows from (5.2). 	 Q.E.D. 

A natural question is to analyze how the isomorphism above goes wrong outside the 
open sets *. We have not worked this out completely, but we state without proof two pretty 
facts about this: 

(a) If the abelian variety X tends to E1  x E2 , Ei  an elliptic curve, so that the polariza- 

tion tends to = 521  + 22  (Ai: Ei 	Ei  the canonical isomorphism), then 2 is not 

very ample. In fact LA has a fixed component F and defines the morphism 

X — F 	E1 -21 , P4  

where Wl  is the morphism defined by 	Let C1  = 4)1(E1), an elliptic quintic curve. Then 
while X approaches E1  x E2  , the corresponding section s of F has a well-defined limit so 
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and Xso  is the singular ruled surface with C1  as cuspidal double curve equal to the union 
of the tangent lines to C1. It follows that at the points (E1  x E2  , 521  + 22  , a) E 11(5,1)  the 
correspondence with P(f(S)) given in (6.1) is still regular, but not biregular, since the image 
does not depend on E2  

(b) Suppose we compactify 21(5, 1)  following Igusa [6] [i.e. take his compactification of 
11(1,1)  and normalize it in C(11(5,1)) via any of the canonicalmorphisms 	i)  Ito, 01 
Then at some of the points at co lying even on the 0-dimensional piece of Satake's compac-
tification, the correspondence remains biregular. The corresponding Xs's depend on one 
parameter OC e C — (0) and are unions of five non-singular quadric surfaces as follows: 

Xs= Qo Qi u Q2 u Q3 U Q4 

Qi = (locus Yi  = Y2+i Y3+ i  + 	i  Y4+ i  = 0)• 

The 10 lines Yi  = Y3  = Yk  = 0 (0 Si<j<k S  4) are double lines on Xs  , and the five 

points Pi  given by yi(Pi) = Si;  are 4-fold points of Xs  . The whole configuration is readily 
visualized if you form a CW-complex E as follows: 

(a) take a point o-i(°)  for each point Pi; 

(b) joint ai(°)  and o-1°)  by a 1-simplex 6,j(1)  corresponding to the double line F1,  
for each i < j; 

(c) glue in a square CP)  corresponding to Qi  filling in the loop 

(o) 

+3 

for each 0 i S  4 (read the subscripts mod 5). 

Then a point or line is on a line or a quadric in P if and only if the corresponding 0-simplex 
or 1-simplex is on the corresponding 1-simplex or square in E. The nice thing is that the 
E you get is homeomorphic to a 2-dimensional real torus: 

PI 	 P3 	 Po 
	 P1  

I 	00  Q t  03 Q3 04 

P3 	 P4 
	 Po 	 Pi 

	
P2 
	 P3  

Glue 

ends 

Glue top and bottom with horizontal shift 
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APPENDIX 

The character table of SL2(7L5) [2, p. 160] 
Put E = exp 27r-V —1/5, = E 	E4, 77' = E 2 	E 3, and let co be a primitive root of x6  = 1 over Z5  . 

Symbols 
used in text 
for these 

k0 1) 0 —1) k0 
( 	0 
0 
602 

 (Ow 0w-1) 
1 	1 (0 1) (1 21) 0  —1 _1) ( 	0 	1  (-1 _2 

0 —1/ 
representa-

tions 

Xi 1 1 1 I 1 1 1 1 1 1 
X5 5 5 1 —1 —1 0 0 0 0 
X6  6 —6 0 0 0 1 1 —1 —1 
X4 4 4 0 1 1 —1 —1 —1 —1 
)(4*  4 —4 0 1 —1 —1 —1 1 1 
X3 3 3 —1 0 0 --)7 —1' —71 —7/' U 

X3' 3 3 —1 0 0 — '7' —7/ --- n' —71 U 
X2 2 —2 0 —1 +1 n 71

, 
 —77 —71' W 

X2' 2 —2 0 —1 H-1 '7' 7/ — q' —77 pr 
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